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SUMMARY

This paper describes the solution of a steady state natural convection problem in porous media by the
dual reciprocity boundary element method (DRBEM). The boundary element method (BEM) for the
coupled set of mass, momentum, and energy equations in two dimensions is structured by the
fundamental solution of the Laplace equation. The dual reciprocity method is based on augmented scaled
thin plate splines. Numerical examples include convergence studies with different mesh size, uniform and
non-uniform mesh arrangement, and constant and linear boundary field discretizations for differentially
heated rectangular cavity problems at filtration with Rayleigh numbers of Ra*=25, 50, and 100 and
aspect ratios of A=1/2, 1, and 2. The solution is assessed by comparison with reference results of the fine
mesh finite volume method (FVM). Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: Darcy porous media; dual reciprocity boundary element method; natural convection;
primitive variables; thin plate splines

1. INTRODUCTION

Understanding the transport phenomena in porous media is of great importance in science and
engineering. This interest appears to be increasing as a result of feasibility studies in diverse
modern technologies, such as the use of geothermal energy in geology, secondary oil recuper-
ation in petroleum engineering, disposal of radioactive wastes in nuclear engineering, fibrous
insulation in mechanical engineering, powder metallurgy, and packed bed reactors in chemical
engineering, to name but a few.
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Ever since the original work of Darcy [1] in 1856, the transport phenomena in porous media
have been studied both experimentally and theoretically [2]. Despite the development of very
sophisticated and relevant analytical techniques (see Reference [3]) a great majority of porous
media models could be solved only by using discrete approximate solutions.

These solutions in parallel with the development of computers nowadays allow the evalua-
tion of physically very complex situations. Moreover, the respective computational modeling
gives an insight into the behavior of porous media in situations that are experimentally
difficult, impossible, or too expensive to perform, e.g., see Goyeau et al. [4].

However, the diversity of the involved length scales, inhomogeneities, and anisotropies,
together with the justification of using different classical models (Darcy, Brinkman,
Forcheimer) in a specific situation, still represents a largely unresolved problem. An elabora-
tion of the state-of-the-art in respective theoretical, experimental, and computational develop-
ments can be found in Kaviany [5].

A frequently encountered physical situation is the porous media natural convection problem,
extensively treated by Nield and Bejan [6].

The problem of Darcy natural convection in porous media was first numerically studied by
Chan et al. [7] in 1970, using the finite difference method (FDM) [8]. A similar study was
performed approximately a decade late by Hickox and Gartling [9], using the finite element
method (FEM) [10]. Prasad and Kulacki [11] pioneered the use of the fintie volume method
(FVM) [12] for solving this problem.

The described natural convection problem represents, from the physical and computational
points of view, a well-coped-with situation. However, the problem has not yet been solved by
any of the boundary element method (BEM) techniques [13,14]. This fact is the principal
motivation for the present research, in the sense of broadening the spectrum of physical
situations for which the BEM might be used.

The BEM [15] is a weighted residual method for solving partial differential equations
(PDEs), characterized by choosing an appropriate fundamental solution as a weighting
function and by using the generalized Green’s formula for the complete transfer of one or
more partial differential operators to the weighted function. The main comparative advantage
of the BEM over the discrete approximative methods is demonstrated in cases where this
procedure results in the boundary integral equations only. This turns out to be possible only
for some PDEs. In general, the procedure results in a boundary–domain integral equation.
For example, when dealing with the BEM for the general transport equation structured by
weighting with the fundamental solution of the Laplace equation, domain integrals appear at
least from the transient, convective, and source terms.

The dual reciprocity boundary element method (DBREM) [16] represents one of the
possibilities for transforming the resultant domain integrals into a finite series of boundary
integrals. The key point of the DRBEM is the approximation of the field in the domain by a
set of global approximation functions and subsequent representation of the domain integrals
of these global functions by the boundary integrals. The discretization of the domain is
respectively represented only by grid points (poles of the global approximation functions) in
contrast to the FEM or FVM methods, where appropriate polygonization needs to be
generated in addition. The DRBEM meshes thus in the domain resembling FDM meshes.
However, the discretization of the geometry and fields on the boundary is piecewise polygonal,
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which gives the method greater flexibility over the FDM methods in coping with the boundary
quantities. In the DRBEM all calculations reduce to the evaluation of boundary integrals only.
The mentioned DBREM characteristics might be advantageous in geometrically complex
situations, which are often encountered in the context of porous media transport phenomena.

Despite the proven practical applicability of the DRBEM, important theoretical questions
remain. For example, which global interpolation functions are most suitable for the represen-
tation of the fields in the domain, and where should the collocation points of these global
interpolation functions be specified. Up to now both questions have been addressed mostly
from the heuristic point of view. The most popular global intepolation function used in the
majority of the DRBEM calculations in the field of transport phenomena so far are the
conicals 1+rn, with rn representing the Euclidean distance between the field point p and a
collocation point pn. The convergence of these functions was studied both numerically and in
a more formal way [17]. To date, only ad hoc distributed points have been used, as an
appropriate error estimator does not exist. Some mathematically substantiated answers to the
first question have recently been discovered by Goldberg and Chen [18] in works concerning
the theory of radial basis functions. It has been demonstrated [19] that the use of augmented
thin plate spline radial functions gives an approximation that minimizes its curvature. The first
theoretical investigations of the convergence of these functions were carried out in Reference
[20]. An error and convergence analysis for the DRBEM for the Poisson equation have been
recently reported by Goldberg et al. [21]. A typical example of a completely non-uniform
DRBEM collocation point mesh in axis symmetry based on augmented thin plates splines [22]
can be found in Reference [23].

The global interpolation of the fields over a domain introduces unknowns in the domain in
addition to the unknowns at the boundary. The number of these additional unknowns usually
exceeds the number of boundary unknowns. The systems of algebraic equations resulting from
the DRBEM are thus large, fully populated, and asymmetric. A third important, but not
sufficiently investigated aspect of the DRBEM method, is the possible iterative solution of
associated systems of algebraic equations. This issue is of utmost importance when solving
large-scale problems. Bulgakov et al. [24] have recently proposed two iterative solution
techniques for DRBEM matrices originating from the diffusion equation.

The DRBEM for solving the energy transport equation was first applied to simple
diffusion-governed linear [25] and non-linear problems [26], then to steady convective–
diffusive problems [27], and finally successfully used in a completely non-linear transient
convective–diffusive context, including phase-change effects and non-linearities arising simul-
taneously from material properties and boundary conditions [28,29].

The DRBEM for solving the steady state momentum transport equation in porous media
was first demonstrated by El Harrouni et al. [30] through the use of the piezometric head
variable and inhomogeneous permeability cast in hydraulic conductivity. Recently, the
DRBEM was upgraded [31] for solving the related transient flow problem. In a later study,
global interpolation functions of the type 1+rn as well 1+rn+rn

2 were used.
Very recently, Rahaim and Kassab [32] proposed a solution to coupled fluid flow and heat

transfer problems by the DRBEM. However, they showed solutions based on 1+rn global
approximation functions only for relatively simple unidirectional flow in a tube. The second
principal motivation for the present research lies in assessing the suitability of the DRBEM
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method in recirculating flow situations. For this purpose, a comparatively simple (no convec-
tion term, no diffusion term in the momentum equation) Darcy natural convection flow has
been used as a logical starting point, which should lead to the treatment of more complicated
fluid flow situations in the future.

The problem is solved as a weak non-linear coupled system of Poisson equations. Particular
emphasis is placed on the integral representation of the pressure and temperature derivatives,
principally differing from representation through global approximation functions used in
Reference [32].

2. GOVERNING EQUATIONS

This paper deals with homogeneous porous media with porosity e and permeability K,
confined to a two-dimensional domain V with boundary G. The rigid porous matrix and the
incompressible fluid with viscosity m saturating the pores have the same constant density 7,
effective thermal conductivity k, and the specific heat at constant pressure cp. The mass
conservation for the defined system is

9 ·v=0 (1)

where v stands for the seepage velocity. The momentum conservation is assumed to obey the
Darcy law

0= −9P−
m

K
v+ f (2)

with P denoting pressure and f the body force. The variation of the density with temperature
is included through the body force term only by using the Boussinesq approximation

f=7a(1−b(T−Tref)) (3)

with a denoting the acceleration vector, b the volumetric thermal expansion coefficient, T the
temperature, and Tref the reference temperature. The energy conservation equation is

7cp9 ·(vT)=k92T (4)

The solutions of Equations (1) and (2) are constructed by assuming impermeable velocity
boundary conditions along the whole boundary G

v·nG=0; p�G (5)

where nG denotes the normal on the boundary G, and p is the position vector. The solution of
Equation (4) is constructed by assuming the division of the boundary G into not necessarily
connected parts GD and GN with the Dirichlet and Neumann thermal boundary conditions
respectively
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T=TG; p�GD (6)

−k
(T
(nG

=FG; p�GN (7)

where TG and FG represent known functions. The solution of the posed natural convection
problem represents the velocity, pressure, and temperature distribution over the domain V and
the boundary G.

3. SOLUTION PROCEDURE

3.1. Integral equations

The construction of the solution is represented in three steps. The first step involves the
conversion of the PDEs into integral equations as well as basic elements of the iterative
procedure. The second step focuses on the discretization and the last one on the setup and
solution of the algebraic systems of equations.

The momentum equation is coupled with the energy equation through the body force. The
energy equation is coupled with the momentum equation through the velocity field. Conse-
quently, the solution inherently involves iterations. The solution steps are explained in a
continuous setting, where no reference needs to be made regarding the discretization, which is
explained afterwards.

Let us assume that the velocity, the pressure, and the temperature fields are all known at
iteration level m. The discussion of the iteration cycle that follows explains how the velocity,
pressure, and temperature fields are calculated at the next iteration level m+1.

The solution of the momentum equation at the iteration level m+1 is obtained in the
following way.

The pressure Poisson equation (PPE) is constructed by taking the divergence of the
momentum conservation (2)

92Pm+1=9 ·
�

−
m

K
vm+ fm� (8)

For the assumed constant viscosity and permeability, the above equation reduces to

92Pm+1=9 · fm (9)

by taking into account the mass conservation equation (1). The Neumann pressure boundary
conditions can be defined along the whole boundary G by taking the scalar product of the
momentum equation with the normal on the boundary. This gives

9Pm+1 ·nG=
�

−
m

K
vm+ fm� ·nG; p�G (10)
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Since the impermeable velocity boundary conditions (5) are valid, the upper equation reduces
to

(Pm+1

(nG
= fm ·nG; p�G (11)

The PPE with the boundary conditions (11) is solved by weighting Equation (9) with the
fundamental solution of the Laplace equation T*(p; s) (where parameter s denotes the source
point position) over the domain V. This gives the following integral equation after application
of Green’s second identity:&

G

(Pm+1

(nG
T* dG−

&
G

Pm+1 (T*
(nG

dG−c s*P s
m+1=

&
V

9 · fmT* dV (12)

The superscript s denotes the evaluation of a quantity at the source point s. c s* denotes the
fundamental solution-related coefficient. The present paper is limited to the two-dimensional
Cartesian system, e.g.

T*=
1

2p
log

r0

r
(13)

where r0 represents the reference radius and r equals

r=r·r; r=rx ix+ry iy ; rx=px−sx, ry=py−sy (14)

px, py denote the Cartesian co-ordinates (base vectors ix, iy) of point p, and sx, sy the Cartesian
co-ordinates of the fundamental solution source point s respectively.

Equation (12) is first used for determining the pressure distribution on the boundary G and
subsequently explicitly in the domain V.

The pressure gradients on the boundary and in the domain can be explicitly calculated from
the pressure gradient Poisson equation (PGPE)&

G

(Pm+1

(nG
9T* dG−

&
G

Pm+19
(T*
(nG

dG+9(c s*P s
m+1)=

&
V

9 · fm9T* dV (15)

obtained by taking the gradient of the PPE acting on the fundamental solution source point.
After calculating the pressure gradient field, the velocity field at iteration level m+1 can be

explicitly calculated from the momentum equation

vm+1=
K

m
(−9Pm+1+ fm) (16)

The iteration cycle is completed by calculating the temperature field at iteration level m+1
(and with this also fm+1). This is accomplished by weighting the energy conservation equation
by the fundamental solution of the Laplace equation and by using Green’s second identity
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&
G

(Tm+1

(nG
T* dG−

&
G

Tm+1 (T*
(nG

dG−c s*T s
m+1=

&
V

1
a

9 ·(vm+1Tm+1)T* dV (17)

with a=k/(7cp) denoting thermal diffusivity. Equation (17), together with the thermal
boundary conditions (6) and (7), is used to simultaneously solve the unknown temperature
distribution in the Neumann part of the boundary, the unknown temperature derivative in the
normal boundary direction in the Dirichlet part of the boundary, and the unknown tempera-
tures in the domain. The temperature gradients on the boundary and in the domain can be
explicitly calculated from

&
G

(Tm+1

(nG
9T* dG−

&
G

Tm+19
(T*
(nG

dG+9(c s*T s
m+1)=

&
V

1
a

9 ·(vm+1Tm+1)9T* dV (18)

obtained by taking the gradient of Equation (17) acting on the fundamental solution source
point.

The iteration cycle is completed with the calculation of the updated body force

fm+1=7a(1−b(Tm+1−Tref)) (19)

The iterations are stopped when conditions

��vm+1�− �vm��B6e

��Tm+1�− �Tm��BTe (20)

are satisfied with 6e and Te representing the velocity and temperature convergence criterions.
In the case when iteration conditions (20) are not satisfied, a new iteration cycle starts with the
relaxed value of the body force

m+1f=mf+crel(m+1f−mf) (21)

with crel representing the heuristic relaxation factor. The discretization of the involved
boundary–domain integral equations and respective formation of the algebraic equation
systems for the solution of the unknowns is elaborated in below.

3.2. Discretization

The velocity, pressure, and temperature fields are all calculated on the same grid points pn ;
n=1, 2, . . . , N ; N=NG+NV. The first NG grid points are distributed on the boundary and
the last NV in the domain. Two simple discretization alternatives are used to approximate the
boundary integrals in Equations (12), (15), (17), and (18). The boundary geometry is
approximated by NG straightline segments, and the spatial variation of the fields on each of the
boundary segments is represented by constant interpolation functions, with grid points
coinciding with the geometrical centers of the straightline segments or with linear interpolation
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functions with the two grid points standing symmetrically with respect to the geometrical
centers of the straightline segments. In the constant case, NG=NG, and in the linear case,
NG=2NG. The Einstein summation convention is used in this text, i.e., any index that is
repeated twice in a product is summed up. An underlined index is not summed up. This for
boundary integrals of a scalar valued function F, which in the present context denotes
pressure or temperature, gives

&
G

(F

(nG
Tl* dG−

&
G

F
(T*
(nGl

dG−c l6*Fl:Glkdki

(Fi

(nG
−HlkdkiFi−c l6*dliFi (22)

where k=1, 2, . . . , NG and i, l=1, 2, . . . , N. Index l denotes sl=pl. d represents the Kron-
decker symbol. Matrix elements Glk and Hlk are defined as follows:

Glk=
&

G(k)

FkTl* dG, Hlk=
&

G(k)

Fk

(Tl*
(nG

dG (23)

where G(k) and Fk represent the boundary segment and the boundary field shape function
associated with the boundary grid point pk, and c l* is equal to

c l*=0, slQV@G; c l*=
1
2

, sl�G; c l*=1, sl�V (24)

The shape functions in the local boundary element co-ordinate system −15f51 are equal
to

F=1 (25)

for constant elements and

F− =
1
2
�

1−
f

f6
�

F+ =
1
2
�

1+
f

f6
�

(26)

for linear elements, with −15f6 51 measuring the relative position of the two boundary
element grid points with respect to the geometrical center of the boundary element [33].

The domain integrals in Equations (12) and (17) are transformed by considering the
approximation of the spatial variation of the fields in V by the global interpolation functions
of the form

F(p):cu(p)wu, u=1, 2, . . . , N+3 (27)
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Two-dimensional scaled augmented thin plate splines are used in this work, due to theoretical
considerations described in Reference [19].

cn(p)=rn
2 log rn, n=1, 2, . . . , N

cN+1(p)=px−px
0

cN+2(p)=py−py
0

cN+3(p)=1

rn
2= (p−pn6 ) ·(p−pn6 ) (28)

The scaling constants px
0 and py

0 have been set to

px
0 =

1
2

(px+ +px−), py
0=

1
2

(py+ +py−) (29)

where px+, py+ represent the maximum and px−, py− represent the minimum co-ordinates px,
py respectively of the domain V.

Coefficients wu are calculated by constructing a system of N+3 algebraic equations

Cw=F (30)

The vectors are w= (w1, w2, . . . , wN+3)T and F= (F1, F2, . . . , FN, 0, 0, 0)T. The first 6=
1, 2, . . . , N rows of matrix C are of the form (c61, c62, . . . , c6N+3), and the last three rows
6=N+1, N+2, N+3 are of the form (c16, c26, . . . , cN6, 0, 0, 0), where the notation has been
shortened to Fn
F(pn), cnu
cu(pn). Coefficients wu follow by inverting system (30)

w=C−1F (31)

Consequently, the domain integrals on the right-hand side of Equations (12) and (17) can be
written in a compact dual reciprocity form (k=1, 2, . . . , NG; i, l=1, 2, . . . , N ; u=
1, 2, . . . , N+3)

&
V

9 ·GTl* dV:C
o

,xluCui
−1Gxi+C

o

,yluCui
−1Gyi (32)

with G denoting a vector-valued function with Cartesian components Gx and Gy. The vector
G is associated with body force in Equation (12) or with convection in the energy equation
(17), and

C
o

,jlu

&

V

(cu

(pj

Tl* dV (33)
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with j denoting x or y. The integral C
o

,jlu is calculated by defining the harmonic functions c. u

92c. u(p)=cu(p) (34)

which allows the integral to be represented as

C
o

,jlu=
&

G

(2c. u

(pj (nG
T* dG−

&
G

(c. u

(pj

(T*
(nG

dG−c s*
(c. u(s)
(pj

(35)

The upper boundary integrals are numerically evaluated by using the same discretization
strategy that leads to expression (22)

C
o

,jlu:Glk
cdki

(2c. iu

(pj (nG
−Hlk

cdki

(c. iu

(pj

−c l6*dli

(c. iu

(pj

(36)

However, matrices Gc and Hc could differ from matrices G and H because the boundary
discretization that corresponds to the calculation of the fields on the boundary and integrals
C$ lu could differ in general. Let us denote the number of boundary grid points leading to the
calculation of matrices Gc and Hc with NG

c. Therefore, index k in Equation (36) runs as
k=1, 2, . . . , NG

c.
The adjacent harmonic functions c. u to the thin plate splines (28) are

c. n=
1
16

rn
4 log rn−

1
32

rn
4

c. N+1=
1
6

(px−px
0)3

c. N+2=
1
6

(py−py
0)3

c. N+3=
1
4

(px−px
0)2+

1
4

(py−py
0)2 (37)

The boundary integrals in Equations (15) and (16) are calculated as

&
G

(F

(nG

(Tl*
(pz

dG−
&

G
F

(T*
(pz (nGl

dT−c l6*
(Fl

(pz

:G,zlkdki

(Fi

(nG
−H,zlkdkiFi−c l6*dli

(Fi

(pz

(38)

with z standing for x and y, and the matrix elements G,zlk and H,zlk are defined as follows:

G,zlk=
&

G(k)

Fk

(Tl*
(pz

dG, H,zlk=
&

G(k)

Fk

(2Tl*
(pz (nG

dG (39)
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The domain integrals in Equations (15) and (18) are calculated as

&
V

9 ·G
(Tl*
(pz

dV:C
o

,xzluCui
−1Gxi+C

o

,yzluCui
−1Gyi (40)

with

C
o

,jzlu

&

V

(cu

(pj

(Tl*
(pz

dV (41)

Upper integrals are evaluated similar to those in Equation (36)

C
o

,jzlu:G ,zlk
c dki

(2c. iu

(pj (nG
−H ,zlk

c dki

(c. iu

(pj

−c l6*dli

(2c. iu

(pj (pz

(42)

with index k running as k=1, 2, 3, . . . , NG
c.

3.3. Systems of algebraic equations

After discretizing the boundary and transforming and discretizing the domain integrals in
Equation (12) as described, the following compact form is obtained:

PCliPi
m+1+PCli

(Pm+1

(nGi

=PCl (43)

with the coefficients

PCli= −Hlkdki−c l6*dli (44)

PCli=Glkdki (45)

PCl=C
o

,xluCui
−1fxi

m +C
o

,yluCui
−1fyi

m (46)

The terms PCli and PCli arise from the left-hand side and the term PCl from the right-hand side
of Equation (12). The application of the boundary conditions (5) yields the following system
of NG algebraic equations for calculating the pressure at the boundary:

APxP=bP (47)

with the system matrix AP in the form

Ali
P=PCli (48)

The vector of unknowns xP is
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xl
P=Pl

m+1 (49)

and the adjacent right-hand side vector is

bl
P= −PCli( fxi6

mnGxi+ fyi6
mnGyi)+PCl (50)

Pressure in the domain modes is calculated from the discrete analog of formula (12)

Pl
m+1= −

1
c l*

�
C
o

,xluCui
−1fxi

m +C
o

,yluCui
−1fyi

m−Glk

(Pm+1

(nGk

+HlkPk
m+1n (51)

Similarly, the pressure gradient components at the boundary and in the domain nodes are
calculated from the discrete analogue of formula (15)

(Pm+1

(pzl

=
1
c l*

�
C
o

,xzluCui
−1fxi

m +C
o

,yzluCui
−1fyi

m−G,zlk

(Pm+1

(nGk

+H,zlkPk
m+1n (52)

After discretizing the boundary and transforming and discretizing the domain integrals in
Equation (17) as described, the following compact form is obtained:

TCliTi
m+1+TCli

(Tm+1

(nGi

=0 (53)

with the coefficients

TCli= −Hlkdki−c l6*dli−
1
a

�
C
o

,xluCui6
−16xi

m+1+C
o

,yluCui6
−16yi

m+1n (54)

TCli=Glkdki (55)

The terms in the upper coefficients that involve C
o

,jlu came from the dual reciprocity
transformation of the convective term. The others correspond to the diffusive term. The
application of boundary conditions (6) and (7) yields the following system of N algebraic
equations for calculating the unknown temperatures in the domain and the unknown temper-
atures or temperature derivatives at the boundary:

ATxT=bT (56)

with the system matrix AT in the form

Ali
T=xi6 TCli+ (1−xi6 )TCli (57)

The vector of unknowns xT is
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xi
T=xi6Ti

j+1+ (1−xi6 )
(T j+1

(nGi

, i=1, 2, . . . , NG (58)

xi
T=Ti, i=NG+1, NG+2, . . . , N (59)

and the adjacent right-hand side vector, which involves the boundary conditions, is

bl
T= − (1−xi6 )TCliTGi−xi

TCli
FFGi (60)

The boundary conditions indicator xi is equal to 0 for pi�GD@V and equal to 1 for pi�GN. The
temperature gradient components at the boundary and in the domain nodes are calculated
from the discrete analogue of formula (18)

(Tm+1

(pzl

=
1
c l*

�
C
o

,xzluCui
−16xi6

m+1Txi
m+1+C

o

,yzluCui
−16yi6

m+1Tyi
m+1−G,zlk

(Tm+1

(nGk

+H
,zlk

Tk
m+1n

(61)

4. NUMERICAL EXAMPLES

4.1. Numerical implementation

The elements of the involved 12 boundary element matrices G, H, Gc, Hc, G,j, H,j, G,j
c , and

H,j
c are all calculated analytically. The corresponding formulas for the constant field shape

function can be found in Reference [34] and the formulas for the linear shape functions will
appear elsewhere. The evaluation of the hypersingular integral appearing in the matrices H,j

and H,j
c when the collocation point coincides with the integration element is carried out in

terms of the constant potential analogy in an internal harmonic function, with zero gradient in
V+G. The fundamental solution reference radius is set to r0=1. The node position f6 is set
to 2/3. The temperature and velocity iteration tolerances are set to Te=10−4, 6e=10−4. The
related criterion (20) is evaluated in all grid points. The involved systems of algebraic equations
(30), (47) and (56) are, in the present work, solved by the standard subroutines from Reference
[35]. The regular systems (30) and (56) are solved by lower–upper (LU) decomposition and
back-substitution by using sub-routines LUDCMP and LUBKSB. System (47) is singular since the
pressure is unknown up to an additive constant [36] in the posed pure Neumann problem. This
system is thus solved by Householder reduction to bidiagonal form and QR diagonalization
with shifts (see Reference [35], p. 469) by using sub-routines SVDCMP and SVBKSB. At this point
it should be noted that intensive investigations are underway to solve systems (47) and (56) in
an iterative way. The first contributions to this issue are described in Reference [24]. The
DRBEM code has been coded in Digital Visual Fortran with double precision accuracy. Test
cases have been run on a HP-Vectra 6/200 PC with an Intel Pentium Pro 200 MHz processor
and 256 MB memory.
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4.2. Differentially heated rectangular ca6ity

Consider a rectangular impermeable cavity px
−5px5px

+py
−5py5py

+ with a heated
boundary at px=px

− and a cooled boundary at px=px
+. The boundaries at py=py

− and the
boundary at py=py

+ are insulated. The heated and the cooled boundaries are subject to
Dirichlet boundary conditions

TG(px−, py)=T+ (62)

TG(px+, py)=T− (63)

The Neumann boundary conditions with FG=0 apply at both insulated boundaries

FG(px, py−)=0 (64)

FG(px, py+)=0 (65)

The posed classical natural convection problem can be written in a dimensionless form by
defining the dimensionless co-ordinates p̃x and p̃y

p̃j=
pj−pj

0

Dpj

(66)

with Dpj=p
j+ −p

j−. Cavity height/width aspect ratio A is defined as

A=
Dpy

Dpx

(67)

The dimensionless velocity ṽ is defined as

ṽ=
Dpy

a
v (68)

The dimensionless pressure P0 is defined as

P0 =K

am
P (69)

The filtration Rayleigh number Ra* based on cavity height is defined as

Ra*=
7KabDpyDT

am
(70)

with DT=T+ −T−. The dimensionless temperature T0 is defined as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 279–312



NATURAL CONVECTION IN POROUS MEDIA 293

T0 =T−Tref

DT
(71)

The Boussinesq reference temperature is set to Tref=
1
2(T

+ −T−). The dimensionless mass and
momentum conservation equations are

90 · ṽ=0 (72)

0= −90 P− ṽ+Ra*T0 iy (73)

with the corresponding dimensionless boundary conditions

ṽ ·nG=0 (74)

The adjacent energy equation is

90 ·(ṽT0 )=90 2T0 (75)

with the corresponding dimensionless boundary conditions

T0 G
�
9

1
2

A, p̃y

�
=9

1
2

(76)

F0 G
�

p̃x, 9
1
2
�

=0 (77)

The posed natural convection problem is completely defined through two dimensionless
parameters, the aspect ratio A and the vertical filtration Rayleigh number Ra*.

4.3. Reference solution

Since the analytical solution to the problem is not known, the characteristics of the developed
method could be assessed only by comparing them with the solution obtained by some other
numerical method. Surprisingly, the present authors have not found any fine-grid reference
solution to the defined problem in the literature as, for example, exists for the natural
convection of laminar Newtonian incompressible fluid in differentially heated rectangular
cavity [37]. Instead, the FVM is used to generate a fine-grid reference solution to the governing
equations. This discretization technique is well known, and a detailed description is not
needed, only the main characteristics are presented hereinafter. Discrete temperature and
pressure values are computed at the nodes of a computational grid defined on the two-
dimensional rectangular domain, while the velocity components are calculated at the nodes of
two staggered sub-grids. The conservation equations are integrated over the corresponding
control volumes, leading to a local balance of the fluxes through the surfaces of the volume.
The integrated equations are discretized, using a combination of the centered and upwind
schemes, according to the value of the local mesh Péclet number (the hybrid scheme of
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Patankar [12]). As the momentum equation is formulated in terms of the primitive variables
(velocity and pressure), the iterative procedure includes a pressure correction calculation
method to solve the pressure–velocity coupling. The code uses the classical simple technique
[12] for the pressure and velocity correction. The set of linear discretized equations derived
from each conservation equation is solved using an alternating direct implicit (ADI) procedure
allowing for the use of the fast Thomas algorithm to solve tridiagonal equation systems. The
convergence criterion is based on the average residue of the continuity equation on the whole
domain and convergence is reached when this residue is less 10−7.

The validation of the numerical code was performed over a large range of parameters for
purely thermal natural convection in fluids [38,39] or in porous media. The numerical method
was successfully used for solving double diffusive natural convection problems in fully [4] or
partially [40] filled porous cavities, using the extended Brinkman formulation of the Darcy law.

The simulations presented hereinafter are based on the Darcy–Brinkman version of the code
[4] using a very low Darcy number, Da=10−8.

The FVM calculations were performed on a Cray-C98 vector computer. An excellent level
of vectorization of the code (95% of the execution in the vector mode) was obtained by
vectorizing the tridiagonal equation system solver where most of the CPU time is spent.

4.4. Discussion of the result

The main purpose of the numerical test presented in this paper is to investigate the
convergence and robustness of the developed method.

The DRBEM solution is compared with the reference values of overall cavity Nusselt
number Nu ref and streamfunction minimum cmin

ref for the five sets of dimensionless parameters
listed in Table I.

The following discretization errors are involved in the present DRBEM formulation:
discretization error due to shape function representation of the fields on the boundary,
discretization error due to global approximation of the fields in the domain, and discretization
error that occurs by the boundary integral representation of the domain integrals of the global
approximation functions. They interplay in the following characteristics of the developed
method.

The DRBEM solution was compared with the reference solution by using seven meshes that
are shown and explained in Figures 1(a)–(e) and 6(b) and (c). The corresponding isotherms

Table I. FVM reference solution for different aspect ratios and filtration
Rayleigh numbers obtained by mesh consisting of 200×200=40 000 grid

points.

Ra*A Nu ref cmin
ref

−1.65501.3682251.0
0.5 50 2.1354 −2.1481

−2.86331.0 50 1.9794
50 1.3863 −2.63932.0

100 3.1018 −4.73571.0
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Figure 1. Isotherms and velocity vectors for A=1, Ra*=100. (a), (b) and (c) discontinuous constant
boundary elements; (d) and (e) discontinuous linear boundary elements. The boundary mesh points are
represented with 	, the domain mesh points are represented with �, and the borders between the
boundary elements are represented with × . Isotherms are equidistantly spaced. (a) Uniform mesh I
(10×10) with NG=40, NV=81, N=21; (b) uniform mesh II (20×20) with NG=80, NV=361, N=441;
(c) uniform mesh III (30×30) with NG=120, NV=841, N=961; (d) uniform mesh II/L with NG=160,
NV=361, N=521; (e) non-uniform mesh II/LN with NG=160, NV=361, N=521. The length of the

two neighboring boundary elements on one square side differs by 10%.
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Figure 1 (Continued)

and velocity vectors are shown in Figure 1(a)–(e) for aspect ratio 1 and filtration Rayleigh
number 100. All figures show the qualitative correctness of the temperature field. The
non-permeable velocity boundary condition is not properly satisfied in solutions with constant
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Figure 1 (Continued)

field shape function boundary elements, as shown in Figure 1(a)–(c). However, the flow across
the boundary becomes less important with a finer mesh and localizes towards the corner. The
solutions with the linear fields shape function boundary elements are shown in Figure 1(d) and
(e) correctly represent the flow also in the corners. At this point a remark regarding the
alternative calculation of the pressure derivatives in present formulation is appropriate. The
pressure derivatives can be calculated from the pressure field in two different ways. The first
one is through the integral representation formula (15) (PGPE). The second one is through the
direct derivation of the global approximation representation (27) of the pressure field. The first
procedure was chosen because of the tested superior accuracy over the second one; particularly
regarding the satisfaction of the non-permeable boundary conditions.

Table II presents a comparison between the DRBEM solution and the reference solution in
terms of the streamfunction minimum for the five different physical situations from Table I.
The CPU times for solving the problem with A=1, Ra=25 with the Meshes I, II, and III are
7.5, 204.3, and 1693.3 s respectively on the PC platform defined in Section 4.1.

The results with A=1, Ra*=100 and cref=1 diverge, so cref is set to 0.1 for reaching
convergence in this particular case. The number of required iterations to reach the solution
grows with decreasing A and increasing Ra*, as shown in Table II.

The relative difference in the calculated streamfunction minimum between the DRBEM
calculations and the reference FVM solution for the five different physical situations is listed
in Table I. It is below 1%, even for the most coarse mesh used. The comparison between the
mid-plane velocity components depicted in Figures 2 and 3 for mesh I from Figure 1(a)
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Table II. Accuracy of the DRBEM solution in terms of streamfunction
minimum for different aspect ratios and filtration Rayleigh numbers as a

function of meshing from Figure 1(a)–(e) and Figure 6(b) and (c).

A Ra* cmin Dc %min Mmax crelMesh

1.0 25 −1.6417 −0.0080I 9 1.0
II 1.0 25 −1.6424 −0.0076 9 1.0

1.0 25 −1.6424III −0.0076 9 1.0

1.0 50 −2.8586 −0.0016I 18 1.0
II 1.0 50 −2.8526 −0.0037 18 1.0
III 1.0 50 −2.8507 −0.0044 18 1.0

1.0 100 −4.7808 +0.0095I 83 0.1
II 1.0 100 −4.7257 −0.0021 85 0.1

1.0 100 −4.7168 −0.0040III 85 0.1

II/L 1.0 100 −4.7163 −0.0019 85 0.1
II/LN 1.0 100 −4.7087 −0.0057 86 0.1

0.5 50 −2.1409 −0.0026IV 30 1.0
2.0V 50 −2.6263 −0.0049 10 1.0

Dc %min= (c %min−cmin
ref )/cmin

ref , with cmin
ref listed in Table I. Mmax represents the number of

required iterations for reaching convergence with eT=0.001 and e6=0.001.

confirms this good agreement. The comparison of the related velocity solutions for other
meshes used is not shown because the DRBEM solution completely coincides with the FVM.

Table III gives a comparison between the DRBEM solution and the reference solution in
terms of the Nusselt number for the five different physical situations from Table I. The Nusselt
number of the DRBEM solution is calculated in three different ways. The first one (denoted
with subscript sng) originates from the direct calculation of the normal components of the
temperature derivatives on the boundary from the equation system (56). The second one
(denoted with subscript hyp) originates from the integral representation formula (18). The
third one (denoted with subscript c) originates from the derivation of the global approxima-
tion representation (27) of the temperature field. Before commenting on the results from Table
III showing the overall Nusselt numbers, a discussion on the local Nusselt number behavior is
given. A comparison between the local Nusselt number at the heated boundary and the
reference one is depicted in Figure 4(a)–(e) for the meshes from Figure 1(a)–(e). The Nusng

results are physically incorrect (negative values!) at the top corner of the heated boundary for
the constant field shape function boundary elements. This can be explained by the fact that
such a primitive order of boundary element field shape functions [33] could not represent
exactly the boundary heat flux, even in the limiting pure conduction-governed differentially
heated cavity problem. However, the Nuhyp and the Nuc results are at least qualitatively correct
with all meshes used. Table II clearly shows the convergence of the Nuc towards the reference
results with finer discretization (meshes I, II, III), with growing order of the approximation of
the fields on the boundary elements (mesh II/L), and with the redistribution of the grid points
towards the corners (mesh II/LN). Most accurate Nu number results are obtained in terms of
Nuhyp as shown in Table III.
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Table III. Accuracy of the DRBEM solution in terms of Nusselt number for
different aspect ratios and filtration Rayleigh numbers as a function of meshing from

Figures 1 and 6.

DNuhyp DNucNuhypMesh Ra*A NucNusng DNusng

1.0 25 −0.02371.3748 1.3895 1.3358 +0.0048 +0.0156I
−0.0043+0.0167+0.01031.36231.39101.3823251.0II

III 1.0 25 1.3830 1.3891 1.3698 +0.0108 +0.0153 +0.0017

I 1.0 50 1.9345 1.9804 1.8376 −0.0227 +0.0005 −0.0716
−0.00301.92532.00471.9735 +0.0128501.0II −0.0273

III 1.0 50 1.9815 2.0041 1.9501 +0.0011 +0.0125 −0.0148

1.0 100 2.8997 3.1066 −0.15842.6106 −0.0652 +0.0016I
II 1.0 100 3.0283 3.1301 2.8916 −0.0237 +0.0091 −0.0678

−0.01102.98643.14903.0678100 +0.01521.0III −0.0372

−0.02611.0 100 3.0965 3.0976 3.0209 −0.0171 −0.0026II/L
−0.0121+0.0007−0.00123.06433.1039II/LN 3.09811001.0

−0.00090.5 50 2.1960 2.2280 2.1334 +0.0284 +0.0434IV
−0.00522.0 50 1.3847 1.3935 1.3763 +0.0012 −0.0052V

DNu= (DNu−DNu ref)/DNu ref, with Nu ref listed in Table I. Subscripts sng, hyp, and c of Nu are
explained in the text.

Figure 2. Dimensionless horizontal velocity V0 x at x̃=0 as a function of cavity height for A=1,
Ra*=100 with mesh I from Figure 1(a). Dots represent the reference FVM solution in 198 grid points.

The solid line represents the calculated global interpolation of the velocity component.
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Figure 3. Dimensionless vertical velocity V0 y at ỹ=0 as a function of cavity width for A=1, Ra*=100
with mesh I from Figure 1(a). The same symbols as in Figure 2.

Figure 5(a)–(e) shows the agreements between the DRBEM solution and the reference
solution in terms of mid-plane temperature and lower insulated boundary temperatures for the
meshes from Figure 1(a)–(e). The agreement between the mid-plane temperature results is
good also for the very coarse mesh. The same observations regarding the DRBEM conver-
gence of the local Nusselt number are valid also for the lower insulated boundary temperature
convergence.

Figure 6(a)–(c) shows the calculated streamlines for A=1, Ra*=50 and three different
aspect ratios obtained by using the uniform meshes. The Nuc and the streamfunction in this
paper are calculated through the global approximation of the thermal and velocity fields.
Related analytical expressions are summarized in Appendices A and B. Finally, it is important
to point out that the calculations have been restricted to low Rayleigh numbers corresponding
to a slow induced velocity field which is natural in porous media.

5. CONCLUSIONS

This paper describes the first attempt at solving the problem of Darcy natural convection in
porous media by the BEM. Results are obtained for the rectangular cavities with aspect ratio
1/2, 1, and 2, and filtration Rayleigh numbers 25, 50, and 100. Discretization is based on the
most simple geometrically straightline, constant, and linear field shape function boundary
elements. The dual reciprocity transformation is based on augmented scaled thin plate splines.
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Figure 4. Hot side Nusselt number as a function of cavity height for A=1, Ra*=100. Dots represent
the reference FVM solution in 1998 grid points. Solid circles and squares represent the calculated local
Nusselt number Nu(py) in boundary grid points, evaluated from the boundary heat fluxes Nusng(py) and
from the integral representation formula Nuhyp(py) respectively. The solid line denotes the calculated
Nuc(py) from the global interpolation representation of the heat flux. (a) Mesh I from Figure 1(a); (b)
mesh II from Figure 1(b); (c) mesh III from Figure 1(c); (d) mesh II/L from Figure 1(d); (e) mesh II/LN

from Figure 1(e).
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Figure 4 (Continued)
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Figure 4 (Continued)

The solution is shown for uniform and non-uniform meshes. The described calculation of the
temperature gradients and pressure gradients by the integral representation formula within the
DRBEM context represents a completely new approach. This approach enables the calculation
of the Nusselt number in three different ways of which the integral representation has been
found to be most accurate. The calculation of the streamfunction and the Nusselt number
from the global approximation representation of the fields leads to closed-form expressions as
shown in the appendices.

It has been found that the physics of the problem are qualitatively properly described even
with very coarse-mesh DRBEM results, which quantitatively do not differ substantially from
the fine-mesh FVM values.

The results show convergence [41] of the h- (mesh refinement, compare results between
meshes I, II, and III), p- (increased order of boundary field shape functions, compare results
between meshes II and II/L), and r- (redistribution, compare results between meshes II/L and
II/LN) types. The strength of the present method lies in accuracy, robustness, and in simple
mesh structure, which can straightforwardly cope with geometrically complicated shapes. One
drawback is the more complicated formulation of the solution procedure compared with the
established numerical methods and the resulting full asymmetric matrices, which are difficult
to solve in an economical way. It would be too ambitious to claim that the represented method
could be extended to a wide variety of porous media situations in engineering practice at this
point. Additional research is definitely required.
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Figure 5. Dimensionless temperature T0 at x̃=x− and x̃=0 as a function of cavity width for A=1,
Ra*=100. Dots represent the reference FVM solution in 198 mesh points. The solid line represents the
calculated global interpolation of the temperature. (a) Mesh I from Figure 1(a); (b) mesh II from Figure
1(b); (c) mesh III from Figure 1(c); (d) mesh II/L from Figure 1(d); (e) mesh II/LN from Figure 1(e).
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Figure 5 (Continued)
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Figure 5 (Continued)

Therefore, our future efforts will be oriented towards physically more involved situations
and towards numerical method improvements. In the first direction, solutions for higher
Rayleigh number flows will be attempted, as well as solutions for inhomogeneous, an-
isotropic, and temperature-dependent materials, which frequently appear in practical prob-
lems. For this purpose, the proper corrections to the Darcy law will need to be made.
Particularly interesting would be the extension to Darcy–Brinkman porous media, where
the non-slip boundary conditions apply. The described principal solution procedure ele-
ments would most probably remain unchanged in such extensions. A formulation of the
DRBEM solution for a physical model that involves temperature-dependent material prop-
erties and inhomogeneous permeability is shown in Reference [42]. Another interesting
field-of-application for the present method are the external natural convection problems. In
such cases, which might extend to infinity, another type of global interpolation functions
that decay with rn should replace the ones used in the present paper to properly match the
far-boundary conditions. In the second direction, higher boundary elements will be numeri-
cally implemented and related analytical expressions developed. Since higher Rayleigh num-
ber flow situations require more dense meshes, the iterative solution of the relevant systems
of algebraic equations would be of utmost importance. For this purpose, recently developed
DRBEM iterative solvers [24] will be employed.
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Figure 6. (a) Streamlines for A=1, Ra*=50 with mesh III (20×20) from Figure 1(c). (b) Streamlines
for A=1/2, Ra*=50. Uniform mesh IV (40×20) with NG=120, NV=551, N=671. (c) Streamlines for
A=2, Ra*=50. Uniform mesh IV (20×40) with NG=120, NV=551, N=671. Discontinuous constant

boundary elements for (b) and (c). All streamlines are equidistantly spaced with 0.25 step.
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Figure 6 (Continued)
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APPENDIX A. CALCULATION OF STREAMFUNCTION

The velocity–streamfunction c % relationship are

6x=
(

(py

c %

6y= −
(

(px

c % (A1)

The streamfunction is calculated from the velocity components as
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c %=
& py

py−

6x dpy

c %= −
& px

px−

6y dpx (A2)

A variation of the velocity components over the domain V and boundary G is based on global
approximation functions

6x:cnCni
−16xi

6y:cnCni
−16yi (A3)

Respectively, the streamfunction could be calculated as

c %=
& py

py−

cn dpy Cni
−16xi

c %= −
& px

px−

cn dpx Cni
−16yi (A4)

The involved intergrals over px are for N=1, 2, . . . , N equal to

& px
+

pz−

cn dpx=
1
3

[(px+ ·(rn(px+)2+2pny
2 ) log rn(px+)−px− ·(rn(px−)2+2pny

2 ) log rn(px−)]

+
2
3

pyn
3 �arctan

rn(px+)
pyn

−arctan
rn(px−)

pyn

n
−

1
9

[(rn(px+)2−pyn
2 )1/2(rn(px+)2−5pyn

2 )

− (rn(px−)2−pyn
2 )1/2(rn(px−)2−5pyn

2 )] (A5)

with

rn(px9)= ((px9−pnx)2+ (py−pny)2)1/2 (A6)

The involved integrals over px are for cN+1, cN+2, cN+3 equal to

& px

px−

cN+1 dpx=
px

2 −px−
2

2
−px

0(px−px−) (A7)

& px

px−

cN+2 dpx= (py−py
0)(px−px−) (A8)
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& px

px−

cN+3 dpx=px−px− (A9)

The relationships for integrals over the py co-ordinate could be easily perceived from the given
formulas for the integrals over the px co-ordinate and are thus not explicitly shown.

APPENDIX B. CALCULATION OF NUSSELT NUMBER

The local Nusselt number Nuc(py) is in the present work calculated as

Nuc(py)=
Tx(px−, py)

ADT
(B1)

The overall cavity Nusselt number Nuc in the present work is calculated as

Nuc=

& py+

py−

Tx(px−, py) dy

ADT
(B2)

Variation of the temperature over the domain V and boundary G is based on global
approximation functions

Tx(px, py):
(

(px

cn(px, py)Cni
−1Ti (B3)

Respectively, Nuc(py) can be evaluated as

Nuc(py)=
((/(px)cn(px−, py)Cni

−1Ti

ADT
(B4)

and Nuc can be evaluated as

Nuc=

& py+

py−

((/(px)cn(px−, py) dpyCni
−1Ti

ADT
(B5)

The involved integrals over py are for n=1, 2, . . . , N equal to& py+

py−

(

(px

cn dpy=2(px−pnx)
�1

2
(py− −py+)− (px−pnx)

×arctan
px−pnx

py+ −pny

−arctan
px−pnx

py− −pny

+ (py+ −pny) log rn(py+)− (py− −pny) log rn(py−)
n

(B6)
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with

rn(py9)= ((px−pnx)2+ (py9−pny)2)1/2 (B7)

The involved integrals over py are for N+1, N+2, and N+3 equal to

& py+

py−

(

(px

cN+1 dpy=py+ −py− (B8)

& py+

py−

(

(px

cN+2 dpy=0 (B9)

& py+

py−

(

(px

cN+3 dpy=0 (B10)
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